The activity of an yttrium alkoxide complex supported by a ferrocene-based ligand was controlled using redox reagents during the ring-opening polymerization of L-lactide. The oxidized complex was characterized by X-ray crystallography and (1)H NMR, XANES, and Mössbauer spectroscopy. Switching in situ between the oxidized and reduced yttrium complexes resulted in a change in the rate of polymerization of L-lactide. Synthesized polymers were analyzed by gel permeation chromatography. Polymerization of trimethylene carbonate was also performed with the reduced and oxidized forms of an indium alkoxide complex. The indium system showed the opposite behavior to that of yttrium, revealing a metal-based dependency on the rate of polymerization.