Due to the high stability of its complexes with many M(2+) and M(3+)-ions, DOTA (1,4,7,10-tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid) is the most commonly used chelator for the derivatization and radiolabeling of bioactive molecules. Most of the currently used DOTA derivatives comprise amine-reactive functionalities, limiting their application to the derivatization of fully protected molecules or otherwise resulting in randomly distributed conjugation sites of undefined number. Click chemistry reactions are a valuable alternative to this unspecific conjugation as they proceed efficiently and chemoselectively under mild conditions allowing a site-specific derivatization of unprotected biomolecules. In this work, we describe straightforward syntheses of DOTA derivatives containing thiol, maleimide, aminooxy, aldehyde, alkyne, and azide functionalities, amenable to the currently most often used click chemistry reactions. Furthermore, the efficiency of the respective click reactions introducing DOTA into bioactive molecules was investigated. For each of the synthesized DOTA synthons, the site-specific and efficient conjugation to Tyr(3)-octreotate could be shown. Among these, the addition and oxime formation reactions proceeded fast and without side reactions, giving the products in high yields of 64-83% after purification. The copper-catalyzed triazole formation reactions produced some side-products, giving the desired products in lower, but still reasonable overall yields of 19-25%. All synthesized peptide-DOTA-conjugates were labeled with (68)Ga in high radiochemical yields of 96-99% and high specific activities providing compounds of high purity, demonstrating the applicability of all synthons for biomolecule modification and subsequent radiolabeling.
Copyright © 2011. Published by Elsevier Ltd.