The mechanism of cAMP-promoted apoptosis is not well defined. In wild-type (WT) murine S49 lymphoma cells, cAMP promotes apoptosis in a protein kinase A (PKA)-dependent manner. We find that treatment of WT S49 cells with 8-CPT-cAMP prominently increases the expression (as determined by DNA microarray analysis, real-time PCR and immunblotting) of cytotoxic T lymphocyte antigen-2α (CTLA-2α), a cathepsin L-like cysteine protease inhibitor. By contrast, CTLA-2α expression is only slightly increased by 8-CPT-cAMP treatment of D-S49 cells, which lack cAMP/PKA-promoted apoptosis. Raising endogenous cAMP (by use of forskolin or inhibition of phosphodiesterase [PDE] 4) or a PKA-selective, but not an Epac-selective, cAMP analogue, increases CTLA-2α mRNA expression; PKA, and not Epac, thus mediates the increase in CTLA-2α expression. An adenoviral CLTA-2α (Ad-CTLA-2α) construct induces apoptosis and enhances cAMP-promoted apoptosis in WT S49 cells but such cells do not have an increase in cathepsin L activity nor does a cathepsin L inhibitor alter cAMP-promoted apoptosis. 8-CPT-cAMP also increases CTLA-2α expression and induces apoptosis in murine cardiac fibroblasts; knockdown of CTLA-2α expression by siRNA blocks 8-CPT-cAMP-promoted apoptosis. Thus, cAMP increases CTLA-2α expression in murine lymphoma and cardiac fibroblasts and this increase in CTLA-2α contributes to cAMP/PKA-promoted apoptosis by mechanisms that are independent of the ability of CTLA-2α to inhibit cathepsin L.
Copyright © 2011 Elsevier Inc. All rights reserved.