Purpose: To propose an automatic atlas-based segmentation framework of the dental structures, called Dentalmaps, and to assess its accuracy and relevance to guide dental care in the context of intensity-modulated radiotherapy.
Methods and materials: A multi-atlas-based segmentation, less sensitive to artifacts than previously published head-and-neck segmentation methods, was used. The manual segmentations of a 21-patient database were first deformed onto the query using nonlinear registrations with the training images and then fused to estimate the consensus segmentation of the query.
Results: The framework was evaluated with a leave-one-out protocol. The maximum doses estimated using manual contours were considered as ground truth and compared with the maximum doses estimated using automatic contours. The dose estimation error was within 2-Gy accuracy in 75% of cases (with a median of 0.9 Gy), whereas it was within 2-Gy accuracy in 30% of cases only with the visual estimation method without any contour, which is the routine practice procedure.
Conclusions: Dose estimates using this framework were more accurate than visual estimates without dental contour. Dentalmaps represents a useful documentation and communication tool between radiation oncologists and dentists in routine practice. Prospective multicenter assessment is underway on patients extrinsic to the database.
Copyright © 2012 Elsevier Inc. All rights reserved.