We report on the observation of the spin separation of light in the plane of incidence when a linearly polarized beam is reflected or refracted at a planar dielectric interface. Remarkably, the in-plane spin separation reaches hundreds of nanometers, comparable with the transverse spin separation induced by the well-known spin Hall effect of light. The observation is properly explained by considering the in-plane spread of wave-vectors. This study thus offers new insights on the spinoptics and may provide a potential method to control light in optical nanodevices.
© 2011 Optical Society of America