The type I cGMP-dependent protein kinases play critical roles in regulating vascular tone, platelet activation and synaptic plasticity. PKG I α and PKG Iβ differ in their first ~100 amino acids giving each isoform unique dimerization and autoinhibitory domains with identical cGMP-binding pockets and catalytic domains. The N-terminal leucine zipper and autoinhibitory domains have been shown to mediate isoform specific affinity for cGMP. PKG Iα has a >10 fold higher affinity for cGMP than PKG Iβ, and PKG Iβ that is missing its leucine zipper has a three-fold decreased affinity for cGMP. The exact mechanism through which the N-terminus of PKG alters cGMP-affinity is unknown. In the present study, we have used deuterium exchange mass spectrometry to study how PKG Iβ's N-terminus affects the conformation and dynamics of its cGMP-binding pockets. We found that the N-terminus increases the rate of deuterium exchange throughout the cGMP-binding domain. Our results suggest that the N-terminus shifts the conformational dynamics of the binding pockets, leading to an "open" conformation that has an increased affinity for cGMP.