We isolated and characterized six cDNA clones from an equine infectious anemia virus-infected cell line that displays a Rev-defective phenotype. With the exception of one splice site in one of the clones, all six cDNAs exhibited the same splicing pattern and consisted of four exons. Exon 1 contained the 5' end of the genome; exon 2 contained the tat gene from mid-genome; exon 3 consisted of a small section of env, near the 5' end of the env gene; and exon 4 contained the putative rev open reading frame from the 3' end of the genome. The structures of the cDNAs predict a bicistronic message in which Tat is encoded by exons 1 and 2 and the presumptive Rev protein is encoded by exons 3 and 4. tat translation appears to be initiated at a non-AUG codon within the first 15 codons of exon 1. Equine infectious anemia virus-specific tat activity was expressed in transient transfections with cDNA expression plasmids. The predicted wild-type Rev protein contains 30 env-derived amino acids and 135 rev open reading frame residues. All of the cDNAs had a frameshift in exon 4, leading to a truncated protein and thus providing a plausible explanation for the Rev-defective phenotype of the original cells. We used peptide antisera to detect the faulty protein, thus confirming the cDNA sequence, and to detect the normal protein in productively infected cells.