New functionalized terpyridine-diamide ligands were recently developed for the group actinide separation by solvent extraction. In order to acquire a better understanding of their coordination mode in solution, protonation and complexation of lanthanides(III), americium(III), and uranium(VI) with these bitopic N,O-bearing ligands were studied in homogeneous methanol/water conditions by experimental and theoretical approaches. UV-visible spectrophotometry was used to determine the protonation and stability constants of te-tpyda and dedp-tpyda. The conformations of free and protonated forms of te-tpyda were investigated using NMR and theoretical calculations. The introduction of amide functional groups on the terpyridine moiety improved the extracting properties of these new ligands by lowering their basicity and enhancing the stability of the corresponding 1:1 complexes with lanthanides(III). Coordination of these ligands was studied by density functional theory and molecular dynamics calculations, especially to evaluate potential participation of hard oxygen and soft nitrogen atoms in actinide coordination and to correlate with their affinity and selectivity. Two predominant inner-sphere coordination modes were found from the calculations: one mode where the cation is coordinated by the nitrogen atoms of the cavity and by the amide oxygen atoms and the other mode where the cation is only coordinated by the two amide oxygen atoms and by solvent molecules. Further simulations and analysis of UV-visible spectra using both coordination modes indicate that inner-sphere coordination with direct complexation of the three nitrogen and two oxygen atoms to the cation leads to the most likely species in a methanol/water solution.