Background: It has been shown that dendritic cells (DCs) and fractalkine play a role in accelerating progression of the inflamed atherosclerotic lesions and plaque rupture. We evaluated the numbers and functional changes of DCs and its subsets in human type 2 diabetes with or without unstable angina pectoris (UAP).
Methods: The study population consisted of 39 diabetic patients (DM:18 without CAD; DM + UAP: 21 with UAP), 18 non-diabetic UAP patients (UAP), and 15 healthy control (Normal). Peripheral blood DCs and its subsets were measured by three color flow cytometry. Serum levels of fractalkine, IL-12, and IFN-α were also measured. The functional status of the monocyte-derived DCs was analyzed by flow cytometry and allogeneic mixed T lymphocytes reaction.
Results: The percent and absolute numbers of DCs and mDC within the total leukocyte population was similar for Normal and DM, while significantly lower in DM + UAP. pDC numbers were not significantly altered. Serum fractalkine in DM + UAP was highest among the four groups (p = 0.04 vs. UAP, p = 0.0003 vs. DM, p < 0.0001 vs. Normal). Circulating mDC inversely correlated with serum fractalkine (r = -0.268, p = 0.01) level. Compared with DM and UAP, the costimulatory molecules CD86 and proliferation of T cells stimulated by DCs were significantly increased in DM + UAP group.
Conclusions: Our study suggested that increases in the fractalkine level and the number and functional changes of blood DCs might contribute to diabetic coronary atherosclerosis and plaque destabilization.