The applicability of field-flow fractionation (FFF) was investigated for determination of size and size distribution of diesel soot particles. A sample preparation procedure was developed for FFF analysis where soot particles are recovered from filters in an ethanol bath sonicator, and then they are dispersed in water containing 0.05% Triton X-100 and 0.02% NaN(3). Mean diameters obtained from sedimentation FFF (SdFFF) and flow FFF (FlFFF) agree well with each other and are in good agreement with diameters obtained from photon correlation spectroscopy (PCS) and scanning electron microscopy. The relative error was less than 11%. Data show diesel soot particles have broad size distributions ranging from 0.05 up to ∼0.5 μm with the mean diameters between 0.1 and 0.2 μm. The use of FlFFF is more convenient as FlFFF fractograms can be converted directly to size distributions, while the conversion of the SdFFF fractogram needs the particle density information. The density needed for SdFFF analysis was obtained by combining the SdFFF retention data with the PCS size data. For samples whose density is known, SdFFF may be more useful as SdFFF provides a wider dynamic range than FlFFF under constant field strength.