Evidence of adaptation in Arabidopsis thaliana (Brassicaceae) phenotypic traits has rarely been shown. We demonstrate latitudinal clines in two A. thaliana traits: hypocotyl responses to red and far-red light. Natural populations of A. thaliana were sampled along a latitudinal gradient from southern to northern Norway. Seeds from maternal families within each population were subjected to 1 wk of constant red, far-red, blue, white, and dark treatments. Hypocotyl lengths were measured for each maternal family within each population. Significant variability within and among populations in hypocotyl responses for the various treatments was found. There was a significant latitudinal cline in hypocotyl responses for red and far-red treatments, with northern populations being more de-etiolated than southern populations. These results suggest that northern populations are more responsive to red and far-red light than southern populations. Thus, differentiation of seedling traits in natural populations of A. thaliana seems in part to be mediated by the phytochrome pathway. There was no correlation between hypocotyl responses and flowering time for any treatment. This suggests that flowering time variability and variability in hypocotyl responses may not be governed by genes shared between the pathways, such as those involved in photoreception or the circadian clock.