The membrane type 1 matrix metalloproteinase (MT1-MMP) is increased in left ventricular (LV) failure. However, the direct effects of altered MT1-MMP levels on survival, LV function, and geometry following myocardial infarction (MI) and the proteolytic substrates involved in this process remain unclear. MI was induced in mice with cardiac-restricted overexpression of MT1-MMP (MT1-MMPexp; full length human), reduced MT1-MMP expression (heterozygous; MT1-MMP(+/-)), and wild type. Post-MI survival was reduced with MT1-MMPexp and increased with MT1-MMP(+/-) compared with WT. LV ejection fraction was lower in the post-MI MT1-MMPexp mice compared with WT post-MI and was higher in the MT1-MMP(+/-) mice. In vivo localization of MT1-MMP using antibody-conjugated microbubbles revealed higher MT1-MMP levels post-MI, which were the highest in the MT1-MMPexp group and the lowest in the MT1-MMP(+/-) group. LV collagen content within the MI region was higher in the MT1-MMPexp vs. WT post-MI and reduced in the MT1-MMP(+/-) group. Furthermore, it was demonstrated that MT1-MMP proteolytically processed the profibrotic molecule, latency-associated transforming growth factor-1-binding protein (LTBP-1), and MT1-MMP-specific LTBP-1 proteolytic activity was increased by over fourfold in the post-MI MT1-MMPexp group and reduced in the MT1-MMP(+/-) group, which was directionally paralleled by phospho-Smad-3 levels, a critical signaling component of the profibrotic transforming growth factor pathway. We conclude that modulating myocardial MT1-MMP levels affected LV function and matrix structure, and a contributory mechanism for these effects is through processing of profibrotic signaling molecules. These findings underscore the diversity of biological effects of certain MMP types on the LV remodeling process.