Different sensitivity of BALB/c 3T3 cell clones in the response to carcinogens

Toxicol In Vitro. 2011 Sep;25(6):1183-90. doi: 10.1016/j.tiv.2011.05.032. Epub 2011 Jun 6.

Abstract

Cell transformation assays (CTAs) are currently regarded as the only possible in vitro alternative to animal testing for carcinogenesis studies. CTAs have been proposed as screening tests for the carcinogenic potential of compounds that have no evidence of genotoxicity but present structural alerts for carcinogenicity. We have extensively used the BALB/c 3T3 model based on the A31 cell clone to test single chemicals, complex mixtures and environmental pollutants. In the prevalidation study carried out by ECVAM, the improved protocol is based on BALB/c 3T3 A31-1-1 cells, a clone derived by A31 cells, that is very sensitive to PAH-induced transformation. The present study was performed in the aim to compare the results obtained with the two different clones exposed to different classes of carcinogens. Cells were treated with PAHs (3-methylcholanthrene, benzo(a)pyrene), alkylating agents (melphalan) and aloethanes (1,2-dibromoethane). The induction of cytotoxicity and the onset of chemically transformed foci were evaluated by two experimental protocols, differing for cell seeding density and chemical treatment duration. The A31-1-1 cells showed higher inherent transformation rate after PAHs treatment, but they were insensitive to 1,2-dibromoethane at concentrations that usually induced transformation in A31 cells. As 1,2-dibromoethane is bioactivated to reactive forms able to bind DNA mainly through the conjugation with intracellular glutathione, these results suggested a reduced activity of phase-2 enzymes involved in glutathione conjugation in A31-1-1 cells. Our results give evidence that inherent metabolic capacity of cells may play a critical role in in vitro cell transformation, cautioning against possible misclassification of chemicals.

Publication types

  • Comparative Study

MeSH terms

  • Animals
  • Antineoplastic Agents, Alkylating / toxicity
  • BALB 3T3 Cells
  • Carcinogenicity Tests / methods*
  • Carcinogens / toxicity*
  • Cell Transformation, Neoplastic / drug effects*
  • Clone Cells
  • Ethylene Dibromide / toxicity
  • Melphalan / toxicity
  • Mice
  • Polycyclic Aromatic Hydrocarbons / toxicity

Substances

  • Antineoplastic Agents, Alkylating
  • Carcinogens
  • Polycyclic Aromatic Hydrocarbons
  • Ethylene Dibromide
  • Melphalan