The analysis of fluorescence microscopy of cells often requires the determination of cell edges. This is typically done using segmentation techniques that separate the cell objects in an image from the surrounding background. This study compares segmentation results from nine different segmentation techniques applied to two different cell lines and five different sets of imaging conditions. Significant variability in the results of segmentation was observed that was due solely to differences in imaging conditions or applications of different algorithms. We quantified and compared the results with a novel bivariate similarity index metric that evaluates the degree of underestimating or overestimating a cell object. The results show that commonly used threshold-based segmentation techniques are less accurate than k-means clustering with multiple clusters. Segmentation accuracy varies with imaging conditions that determine the sharpness of cell edges and with geometric features of a cell. Based on this observation, we propose a method that quantifies cell edge character to provide an estimate of how accurately an algorithm will perform. The results of this study will assist the development of criteria for evaluating interlaboratory comparability.
Published 2011 Wiley-Liss, Inc.