In vivo misfolding of proinsulin below the threshold of frank diabetes

Diabetes. 2011 Aug;60(8):2092-101. doi: 10.2337/db10-1671. Epub 2011 Jun 15.

Abstract

Objective: Endoplasmic reticulum (ER) stress has been described in pancreatic β-cells after onset of diabetes-a situation in which failing β-cells have exhausted available compensatory mechanisms. Herein we have compared two mouse models expressing equally small amounts of transgenic proinsulin in pancreatic β-cells.

Research design and methods: In hProCpepGFP mice, human proinsulin (tagged with green fluorescent protein [GFP] within the connecting [C]-peptide) is folded in the ER, exported, converted to human insulin, and secreted. In hProC(A7)Y-CpepGFP mice, misfolding of transgenic mutant proinsulin causes its retention in the ER. Analysis of neonatal pancreas in both transgenic animals shows each β-cell stained positively for endogenous insulin and transgenic protein.

Results: At this transgene expression level, most male hProC(A7)Y-CpepGFP mice do not develop frank diabetes, yet the misfolded proinsulin perturbs insulin production from endogenous proinsulin and activates ER stress response. In nondiabetic adult hProC(A7)Y-CpepGFP males, all β-cells continue to abundantly express transgene mRNA. Remarkably, however, a subset of β-cells in each islet becomes largely devoid of endogenous insulin, with some of these cells accumulating large quantities of misfolded mutant proinsulin, whereas another subset of β-cells has much less accumulated misfolded mutant proinsulin, with some of these cells containing abundant endogenous insulin.

Conclusions: The results indicate a source of pancreatic compensation before the development of diabetes caused by proinsulin misfolding with ER stress, i.e., the existence of an important subset of β-cells with relatively limited accumulation of misfolded proinsulin protein and maintenance of endogenous insulin production. Generation and maintenance of such a subset of β-cells may have implications in the avoidance of type 2 diabetes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Endoplasmic Reticulum / metabolism*
  • Endoplasmic Reticulum / pathology
  • Female
  • Humans
  • Islets of Langerhans / pathology
  • Islets of Langerhans / physiopathology
  • Islets of Langerhans / ultrastructure
  • Male
  • Mice
  • Mice, Transgenic
  • Microscopy, Electron, Transmission
  • Proinsulin / biosynthesis
  • Proinsulin / genetics
  • Proinsulin / metabolism*
  • Protein Folding
  • Transgenes

Substances

  • Proinsulin