Purpose: In animal models, the small intestine responds to massive small bowel resection (SBR) through a compensatory process termed adaptation, characterized by increases in both villus height and crypt depth. This study seeks to determine whether similar morphologic alterations occur in humans after SBR.
Methods: Clinical data and pathologic specimens of infants who had both an SBR for necrotizing enterocolitis and an ostomy takedown from 1999 to 2009 were reviewed. Small intestine mucosal morphology was compared in the same patients at the time of SBR and at the time of ostomy takedown.
Results: For all samples, there was greater villus height (453.6 ± 20.4 vs 341.2 ± 12.4 μm, P < .0001) and crypt depth (178.6 ± 7.2 vs 152.6 ± 6 μm, P < .01) in the ostomy specimens compared with the SBR specimens. In infants with paired specimens, there was an increase of 31.7% ± 8.3% and 22.1% ± 10.0% in villus height and crypt depth, respectively. There was a significant correlation between the amount of intestine resected and the percent change in villus height (r = 0.36, P < .05).
Conclusion: Mucosal adaptation after SBR in human infants is similar to what is observed in animal models. These findings validate the use of animal models of SBR used to understand the molecular mechanisms of this important response.
Copyright © 2011 Elsevier Inc. All rights reserved.