Pre- and postsynaptic excitatory action of glutamate agonists on frog vestibular receptors

Hear Res. 1990 Jul;46(3):253-9. doi: 10.1016/0378-5955(90)90006-b.

Abstract

In order to investigate the localization and the type(s) of excitatory amino acid receptors in the frog vestibular system, the exogenous amino acid agonists Quisqualic acid, Kainic acid and N-methyl-D-aspartic acid were tested on the sensory organ of semicircular canals. Intracellular recordings of the resting discharge from single afferents showed that these agonists exerted a complex excitatory action consisting in a rapid and brief increase in frequency of both EPSPs and spikes, followed by a slower and longer lasting membrane depolarization. The progressive impairment of natural transmitter release achieved by adding Mg2+ or Co2+ in the bath caused a dose-dependent decrease of the agonist-induced afferent discharge, without substantially affecting axonal depolarization. These results suggest that the exogenous amino acid agonists act both pre- and postsynaptically on the vestibular organs. Quisqualic acid and kainic acid were much more potent than N-methyl-D-aspartic acid in inducing excitatory effects, suggesting that the amino acid receptors located on both hair cells and afferent endings are mainly of the non-NMDA type. The present findings, while not excluding that an excitatory amino acid may be the afferent transmitter, highlight its possible function as a presynaptic modulator of the afferent transmission in the frog vestibular system.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Afferent Pathways / drug effects
  • Afferent Pathways / physiology
  • Animals
  • Aspartic Acid / analogs & derivatives
  • Aspartic Acid / pharmacology
  • Glutamates / physiology*
  • In Vitro Techniques
  • Kainic Acid / pharmacology
  • Membrane Potentials / drug effects
  • Membrane Potentials / physiology
  • N-Methylaspartate
  • Oxadiazoles / pharmacology*
  • Quisqualic Acid
  • Rana esculenta
  • Receptors, Glutamate
  • Receptors, Neurotransmitter / drug effects*
  • Receptors, Neurotransmitter / physiology
  • Synapses / drug effects
  • Synapses / physiology
  • Synaptic Transmission / drug effects
  • Synaptic Transmission / physiology
  • Vestibule, Labyrinth / drug effects*
  • Vestibule, Labyrinth / physiology

Substances

  • Glutamates
  • Oxadiazoles
  • Receptors, Glutamate
  • Receptors, Neurotransmitter
  • Aspartic Acid
  • N-Methylaspartate
  • Quisqualic Acid
  • Kainic Acid