Background: Hydrogen peroxide (H2O2) is detectable in exhaled breath condensate (EBC) and has been proposed to be a surrogate marker of oxidative stress in the airways. In this study we tested whether the breathing pattern during EBC collection influences the concentration of exhaled H2O2.
Methods: EBC was collected during (1) tidal breathing and (2) breathing with increased tidal volume for 10 min from 16 healthy volunteers. On-line H2O2 measurement was performed by the EcoCheck™ biosensor system. Repeated measurements were also conducted to assess intrasubject reproducibility.
Results: Minute ventilation, tidal volume, expiratory flow rate were all increased significantly when subjects were asked to perform breathing with increased tidal volume. In parallel, EBC volume increased (1413±59 vs. 1959±71 μL, p<0.001), whereas exhaled H2O2 levels decreased significantly (1400±170 vs. 840±130 nmol/L, p<0.001). H2O2 levels did not correlate with any individual breathing parameters (p>0.05). Assessment of intersubject variability of H2O2 measurements during the two types of breathing revealed a coefficient of variation of 49 and 54%, respectively. The EBC H2O2 measurement was highly reproducible (888±176 vs. 874±156 nmol/L) as tested during normal breathing.
Conclusions: These data demonstrate that the concentration of H2O2 in EBC depends on the ventilatory pattern during sample collection that has to be taken into consideration in all EBC H2O2 assays.