Solid-state NMR ensemble dynamics as a mediator between experiment and simulation

Biophys J. 2011 Jun 22;100(12):2922-8. doi: 10.1016/j.bpj.2011.02.063.

Abstract

Solid-state NMR (SSNMR) is a powerful technique to describe the orientations of membrane proteins and peptides in their native membrane bilayer environments. The deuterium ((2)H) quadrupolar splitting (DQS), one of the SSNMR observables, has been used to characterize the orientations of various single-pass transmembrane (TM) helices using a semistatic rigid-body model such as the geometric analysis of labeled alanine (GALA) method. However, dynamic information of these TM helices, which could be related to important biological function, can be missing or misinterpreted with the semistatic model. We have investigated the orientation of WALP23 in an implicit membrane of dimyristoylglycerophosphocholine by determining an ensemble of structures using multiple conformer models with a DQS restraint potential. When a single conformer is used, the resulting helix orientation (tilt angle (τ) of 5.6 ± 3.2° and rotation angle (ρ) of 141.8 ± 40.6°) is similar to that determined by the GALA method. However, as the number of conformers is increased, the tilt angles of WALP23 ensemble structures become larger (26.9 ± 6.7°), which agrees well with previous molecular dynamics simulation results. In addition, the ensemble structure distribution shows excellent agreement with the two-dimensional free energy surface as a function of WALP23's τ and ρ. These results demonstrate that SSNMR ensemble dynamics provides a means to extract orientational and dynamic information of TM helices from their SSNMR observables and to explain the discrepancy between molecular dynamics simulation and GALA-based interpretation of DQS data.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Alanine / chemistry
  • Deuterium / chemistry
  • Dimyristoylphosphatidylcholine / chemistry
  • Hydrophobic and Hydrophilic Interactions
  • Magnetic Resonance Spectroscopy
  • Molecular Dynamics Simulation*
  • Peptides / chemistry
  • Protein Structure, Secondary
  • Rotation

Substances

  • Peptides
  • Deuterium
  • Alanine
  • Dimyristoylphosphatidylcholine