A correlation between thermal, optical and morphological properties of self-sustained films formed from blends of poly(3-hexylthiophene) (P3HT) and thermoplastic polyurethane (TPU), with 1, 10 and 20 wt% of P3HT in TPU, is established. Images of scanning electron microscopy (SEM) show the formation of domains of P3HT into the TPU matrix, characterizing the blend material as heterogeneous. The heat capacity (C(p)) dependence on P3HT contents was investigated in a large temperature interval. In the region of the TPU glass transition, the difference between the experimental and predicted ΔC(p) values is more pronounced for the 1 wt% case, which strongly suggests that in this case there is a higher influence of the P3HT chains on the TPU matrix. The SEM images for the 1 wt% blended film present the formation of the smallest P3HT domains in the TPU matrix. The relatively high reduction of the PL intensity of the pure electronic transition peak in the 1 wt% blended film, in comparison to the other blended films and also to a pure P3HT film, favours the assumption that the smallest P3HT domains are at the origin of a more structural disordered character. This fact is in agreement with the results obtained by Raman spectroscopy and also by photoluminescence resolved by polarization in stretched self-sustained films, showing an ample correlation between morphological, thermal and optical properties of these blended materials. In addition, the thermoplastic properties of the polyurethane configure very good conditions for tensile drawing of P3HT and other conjugated polymer molecules.