We have studied the wetting phenomena of the liquid Se-Tl system on a quartz substrate by photography and ellipsometry, and found that a thin layer of the Se-rich liquid phase intrudes between the Tl-rich liquid phase and the quartz substrate in the temperature region far below the critical temperature. Surprisingly, neither the Se-rich nor the Tl-rich wetting film is formed near the critical temperature, indicating the critical point dewetting. In addition, we found that the temperature difference between the surface and the bulk liquid induces the transition between the wetting and non-wetting states. In order to interpret the observation, we constructed a model grand potential, incorporating the long-range interaction, the temperature difference and gravity. From this analysis, it is suggested that the combination of the long-range force and gravity plays an important role in overcoming the critical point wetting phenomena.