Can the hair follicle become a model for studying selected aspects of human ocular immune privilege?

Invest Ophthalmol Vis Sci. 2011 Jun 23;52(7):4447-58. doi: 10.1167/iovs.10-7154.

Abstract

Immune privilege (IP) is important in maintaining ocular health. Understanding the mechanism underlying this dynamic state would assist in treating inflammatory eye diseases. Despite substantial progress in defining eye IP mechanisms, because of the scarcity of human ocular tissue for research purposes, most of what we know about ocular IP is based on rodent models (of unclear relevance to human eye immunology) and on cultured human eye-derived cells that cannot faithfully mirror the complex cell-tissue interactions that underlie normal human ocular IP in situ. Therefore, accessible, instructive, and clinically relevant human in vitro models are needed for exploring the general principles of why and how IP collapses under clinically relevant experimental conditions and how it can be protected or even restored therapeutically. Among the few human IP sites, the easily accessible and abundantly available hair follicle (HF) may offer one such surrogate model. There are excellent human HF organ culture systems for the study of HF IP in situ that instructively complement in vivo autoimmunity research in the human system. In this article, we delineate that the human eye and HF, despite their obvious differences, share key molecular and cellular mechanisms for maintaining IP. We argue that, therefore, human scalp HFs can provide an unconventional, but highly instructive, accessible, easily manipulated, and clinically relevant preclinical model for selected aspects of ocular IP. This essay is an attempt to encourage professional eye researchers to turn their attention, with appropriate caveats, to this candidate surrogate model for ocular IP in the human system.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Autoimmunity / immunology*
  • Eye / immunology*
  • Eye Diseases / immunology*
  • Eye Diseases / pathology
  • Hair Follicle / cytology
  • Hair Follicle / immunology*
  • Humans
  • Models, Biological*