Fusion proteins containing the amino terminus of mixed lineage leukemia (MLL) are common in acute lymphoblastic leukemia (ALL) due to translocations. The MLL-AF4 fusion protein is generated by the translocation t(4;11)(q21;q23), and t(4;11)-positive ALL patients (MLL-AF4 ALL), have a notoriously poorer prognosis compared with patients with other MLL-associated leukemias. The detailed role of this fusion protein in leukemogenesis is not well understood. MicroRNAs (miRNAs) targeting the AF4 3' untranslated regions may modulate MLL-AF4 fusion protein levels, raising the question of whether regulation of these miRNAs are involved in the progression of MLL-AF4 ALL. In this study, we show that miR-143 was identified as a regulator of MLL-AF4 expression in MLL-AF4 ALL samples. Restoration of miR-143 in MLL-AF4-positive RS4;11 and MV4-11 cells induced apoptosis, negatively contributing to leukemia cell growth by reducing MLL-AF4 fusion protein levels. Furthermore, miR-143 was epigenetically repressed by promoter hypermethylation in MLL-AF4-positive primary blasts and cell lines, but not in normal bone marrow cells and MLL-AF4-negative primary blasts, which was directly associated with expression of the MLL-AF4 oncogene. This is the first study to show that miR-143 functions as a tumor suppressor in MLL-AF4 B-cell ALL. These data reveal the therapeutic promise of upregulating miR-143 expression for MLL-AF4 B-cell ALL.