Caveolins are scaffolding proteins that play a pivotal role in numerous processes, including caveolae biogenesis, vesicular transport, cholesterol homeostasis and regulation of signal transduction. There are three different isoforms (Cav-1, -2 and -3) that form homo- and hetero-aggregates at the plasma membrane and modulate the activity of a number of intracellular binding proteins. Cav-1 and Cav-3, in particular, are respectively expressed in the reserve elements (e.g. satellite cells) and in mature myofibres of skeletal muscle and their expression interplay characterizes the switch from muscle precursors to differentiated elements. Recent findings have shown that caveolins are also expressed in rhabdomyosarcoma, a group of heterogeneous childhood soft-tissue sarcomas in which the cancer cells seem to derive from progenitors that resemble myogenic cells. In this review, we will focus on the role of caveolins in rhabdomyosarcomas and on their potential use as markers of the degree of differentiation in these paediatric tumours. Given that the function of Cav-1 as tumour conditional gene in cancer has been well-established, we will also discuss the relationship between Cav-1 and the progression of rhabdomyosarcoma.
© 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.