Interactions between the malignant plasma cells of multiple myeloma and stromal cells within the bone marrow microenvironment are essential for myeloma cell survival, mirroring the same dependence of normal bone marrow-resident long-lived plasma cells on specific marrow niches. These interactions directly transduce prosurvival signals to the myeloma cells and also induce niche production of supportive soluble factors. However, despite their central importance, the specific molecular and cellular components involved remain poorly characterized. We now report that the prototypic T cell costimulatory receptor CD28 is overexpressed on myeloma cells during disease progression and in the poor-prognosis subgroups and plays a previously unrecognized role as a two-way molecular bridge to support myeloid stromal cells in the microenvironment. Engagement by CD28 to its ligand CD80/CD86 on stromal dendritic cell directly transduces a prosurvival signal to myeloma cell, protecting it against chemotherapy and growth factor withdrawal-induced death. Simultaneously, CD28-mediated ligation of CD80/CD86 induces the stromal dendritic cell to produce the prosurvival cytokine IL-6 (involving novel cross-talk with the Notch pathway) and the immunosuppressive enzyme IDO. These findings identify CD28 and CD80/CD86 as important molecular components of the interaction between myeloma cells and the bone marrow microenvironment, point to similar interaction for normal plasma cells, and suggest novel therapeutic strategies to target malignant and pathogenic (e.g., in allergy and autoimmunity) plasma cells.