Effects of ocean acidification on trace element accumulation in the early-life stages of squid Loligo vulgaris

Aquat Toxicol. 2011 Sep;105(1-2):166-76. doi: 10.1016/j.aquatox.2011.05.021. Epub 2011 Jun 7.

Abstract

The anthropogenic release of carbon dioxide (CO(2)) into the atmosphere leads to an increase in the CO(2) partial pressure (pCO(2)) in the ocean, which may reach 950 μatm by the end of the 21st century. The resulting hypercapnia (high pCO(2)) and decreasing pH ("ocean acidification") are expected to have appreciable effects on water-breathing organisms, especially on their early-life stages. For organisms like squid that lay their eggs in coastal areas where the embryo and then paralarva are also exposed to metal contamination, there is a need for information on how ocean acidification may influence trace element bioaccumulation during their development. In this study, we investigated the effects of enhanced levels of pCO(2) (380, 850 and 1500 μatm corresponding to pH(T) of 8.1, 7.85 and 7.60) on the accumulation of dissolved (110m)Ag, (109)Cd, (57)Co, (203)Hg, (54)Mn and (65)Zn radiotracers in the whole egg strand and in the different compartments of the egg of Loligo vulgaris during the embryonic development and also in hatchlings during their first days of paralarval life. Retention properties of the eggshell for (110m)Ag, (203)Hg and (65)Zn were affected by the pCO(2) treatments. In the embryo, increasing seawater pCO(2) enhanced the uptake of both (110m)Ag and (65)Zn while (203)Hg showed a minimum concentration factor (CF) at the intermediate pCO(2). (65)Zn incorporation in statoliths also increased with increasing pCO(2). Conversely, uptake of (109)Cd and (54)Mn in the embryo decreased as a function of increasing pCO(2). Only the accumulation of (57)Co in embryos was not affected by increasing pCO(2). In paralarvae, the CF of (110m)Ag increased with increasing pCO(2), whereas the (57)Co CF was reduced at the highest pCO(2) and (203)Hg showed a maximal uptake rate at the intermediate pCO(2). (54)Mn and (65)Zn accumulation in paralarvae were not significantly modified by hypercapnic conditions. Our results suggest a combined effect of pH on the adsorption and protective properties of the eggshell and of hypercapnia on the metabolism of embryo and paralarvae, both causing changes to the accumulation of metals in the tissues of L. vulgaris.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Carbon Dioxide / analysis
  • Hydrogen-Ion Concentration
  • Loligo / embryology
  • Loligo / metabolism*
  • Seawater / chemistry*
  • Trace Elements / metabolism*
  • Water Pollutants, Chemical / metabolism*
  • Water Pollution / adverse effects

Substances

  • Trace Elements
  • Water Pollutants, Chemical
  • Carbon Dioxide