Purpose: To prospectively investigate the technical feasibility and performance of image fusion for whole-body diffusion-weighted imaging (wbDWI) and computed tomography (CT) to detect metastases using hybrid positron emission tomography/computed tomography (PET/CT) as reference standard.
Material and methods: Fifty-two patients (60 ± 14 years; 18 women) with different malignant tumor disease examined by PET/CT for clinical reasons consented to undergo additional wbDWI at 1.5 Tesla. WbDWI was performed using a diffusion-weighted single-shot echo-planar imaging during free breathing. Images at b = 0 s/mm(2) and b = 700 s/mm(2) were acquired and apparent diffusion coefficient (ADC) maps were generated. Image fusion of wbDWI and CT (from PET/CT scan) was performed yielding for wbDWI/CT fused image data. One radiologist rated the success of image fusion and diagnostic image quality. The presence or absence of metastases on wbDWI/CT fused images was evaluated together with the separate wbDWI and CT images by two different, independent radiologists blinded to results from PET/CT. Detection rate and positive predictive values for diagnosing metastases was calculated. PET/CT examinations were used as reference standard.
Results: PET/CT identified 305 malignant lesions in 39 of 52 (75%) patients. WbDWI/CT image fusion was technically successful and yielded diagnostic image quality in 73% and 92% of patients, respectively. Interobserver agreement for the evaluation of wbDWI/CT images was κ = 0.78. WbDWI/CT identified 270 metastases in 43 of 52 (83%) patients. Overall detection rate and positive predictive value of wbDWI/CT was 89% (95% CI, 0.85-0.92) and 94% (95% CI, 0.92-0.97), respectively.
Conclusion: WbDWI/CT image fusion is technically feasible in a clinical setting and allows the diagnostic assessment of metastatic tumor disease detecting nine of 10 lesions as compared with PET/CT.
Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.