Background: Pancreatic ductal adenocarcinoma (PDA) is a highly lethal disease; a prominent desmoplastic reaction is a defining characteristic. Fibrillar collagens, such as collagen I and to a lesser extent, collagens III and V, comprise the majority of this stromal fibrosis. Type VI collagen (COL6) forms a microfibrillar network associated with type I collagen fibrils. The expression of COL6 has been linked with inflammation and survival. Importantly, tumor-specific alternative splicing in COL6A3 has been identified in several cancers by genome exon arrays. We evaluated the expression and localization of COL6A3 in PDA and premalignant lesions and explored the presence of alternative splicing events.
Methods: We analyzed paired PDA-normal (n = 18), intraductal papillary mucinous neoplasms (IPMN; n = 5), pancreatic cystadenoma (n = 5), and 8 PDA cell lines with reverse transcriptase polymerase chain reaction, using unique primers that identify total COL6A3 gene and alternative splicing sites in several of its exons. Western blot analysis and immunohistochemistry were used to analyze the expression levels and localization of COL6A3 protein in the different lesions, and in 2 animal models of PDA.
Results: COL6A3 protein levels were significantly upregulated in 77% of the paired PDA-adjacent tissue examined. COL6A3 was mainly present in the desmoplastic stroma of PDA, with high deposition around the malignant ducts and in between the sites of stromal fatty infiltration. Analysis of the COL6A3 splice variants showed tumor-specific consistent inclusion of exons 3 and 6 in 17 of the 18 (94%) paired PDA-adjacent tissues. Inclusion of exon 4 was exclusively tumor specific, with barely detectable expression in the adjacent tissues. IPMN and pancreatic cystadenomas showed no expression of any of the examined exons. Total COL6A3 mRNA and exon 6 were identified in 6 PDA cell lines, but only 2 cell lines (MIA PACA-2 and ASPC-1) expressed exons 3 and 4. In both the xenograft and transgenic models of PDA, COL6A3 immunoreactivity was present in the stroma and some PDA cells.
Conclusion: We have described, for the first time, a dynamic process of tumor-specific alternative splicing in several exons of stromal COL6A3. Alternatively spliced proteins may contribute to the etiology or progression of cancer and may serve as markers for cancer diagnosis. Identification of COL6A3 isoforms as PDA-specific provides the basis for future studies to explore the oncogenic and diagnostic potential of these alternative splicing events.
Copyright © 2011 Mosby, Inc. All rights reserved.