Steinley (2007) provided a lower bound for the sum-of-squares error criterion function used in K-means clustering. In this article, on the basis of the lower bound, the authors propose a method to distinguish between 1 cluster (i.e., a single distribution) versus more than 1 cluster. Additionally, conditional on indicating there are multiple clusters, the procedure is extended to determine the number of clusters. Through a series of simulations, the proposed methodology is shown to outperform several other commonly used procedures for determining both the presence of clusters and their number.