Simple reconstitution of protein pores in nano lipid bilayers

Nano Lett. 2011 Aug 10;11(8):3334-40. doi: 10.1021/nl201707d. Epub 2011 Jul 20.

Abstract

We developed a new, simple and robust approach for rapid screening of single molecule interactions with protein channels. Our glass nanopipets can be fabricated simply by drawing glass capillaries in a standard pipet puller, in a matter of minutes, and do not require further modification before use. Giant unilamellar vesicles break when in contact with the tip of the glass pipet and form a supported bilayer with typical seal resistances of ∼140 GΩ, which is stable for hours and at applied potentials up to 900 mV. Bilayers can be formed, broken, and re-formed more than 50 times using the same pipet enabling rapid screening of bilayers for single protein channels. The stability of the lipid bilayer is significantly superior to that of traditionally built bilayers supported by Teflon membranes, particularly against perturbation by electrical and mechanical forces. We demonstrate the functional reconstitution of the E. coli porin OmpF and α-hemolysin in a glass nanopipet supported bilayer. Interactions of the antibiotic enrofloxacin with the OmpF channel have been studied at the single-molecule level, demonstrating the ability of this method to detect single molecule interactions with protein channels. High-resolution conductance measurements of protein channels can be performed with low sample and buffer consumption. Glass nanopipet supported bilayers are uniquely suited for single-molecule studies as they are more rigid and the lifetime of a stable membrane is on the scale of hours, closer to that of natural cell membranes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Lipid Bilayers*
  • Microscopy, Electron, Scanning
  • Nanotechnology*
  • Proteins / chemistry*

Substances

  • Lipid Bilayers
  • Proteins