We suggest that Diffuse Correlation Spectroscopy (DCS) measurements of tissue blood flow primarily probe relative red blood cell (RBC) motion, due to the occurrence of multiple sequential scattering events within blood vessels. The magnitude of RBC shear-induced diffusion is known to correlate with flow velocity, explaining previous reports of linear scaling of the DCS "blood flow index" with tissue perfusion despite the observed diffusion-like auto-correlation decay. Further, by modeling RBC mean square displacement using a formulation that captures the transition from ballistic to diffusive motion, we improve the fit to experimental data and recover effective diffusion coefficients and velocity de-correlation time scales in the range expected from previous blood rheology studies.
Keywords: (170.0170) Medical optics and biotechnology; (170.1470) Blood or tissue constitutent monitoring; (170.3340) Laser Doppler velocimetry; (170.6480) Spectroscopy, speckle.