Quantification of the number of receptors per cell (NRPC) is important when assessing whether a tumor surface biomarker is suitable for medical imaging. One common method for NPRC quantification is to use a binding saturation assay, which is time consuming and requires large amounts of reagents. The aim of this study was to evaluate an alternative method based on kinetic extrapolation (KEX) and compare it with the classical manual saturation technique with regard to accuracy as well as time and reagent consumption. Epidermal growth factor receptor (EGFR) and HER2 receptor surface expression were quantified on five tumor cell lines using three 125I-labeled and 131I-labeled ligands (cetuximab and EGF for EGFR, trastuzumab for HER2 receptor) for both techniques. The KEX method involved interaction measurements in the LigandTracer, followed by KEX through computerized real-time interaction analysis to correct for nonsaturation on cells. Variability and NRPC estimates of the EGFR and HER2 receptor levels using the KEX method were comparable with the results from the classical saturation technique. However, the ligand consumption for the KEX method was 26-46% of the classical saturation technique. Furthermore, the KEX method reduced the workload radically. From the observations described in this study, we believe that the KEX method enables fast, credible, and easy NRPC quantification with a reduction in reagent consumption.