Due to the continuous development and production of manufactured nanomaterials or nanoparticles (NPs), their uptake and effects in the aquatic biota represent a major concern. Estuarine and coastal environments are expected to represent the ultimate sink for NPs, where their chemical behavior (aggregation/agglomeration) and consequent fate may be critical in determining the biological impact. Bivalve mollusks are abundant from freshwater to marine ecosystems, where they are widely utilized in biomonitoring of environmental perturbations. As suspension-feeders, they have highly developed processes for cellular internalization of nano- and micro-scale particles (endo- and phagocytosis), integral to key physiological functions such as intra-cellular digestion and cellular immunity. Here we will summarise available information on the effects of different types of NPs in different bivalve species, in particular Mytilus spp. Data on the effects and modes of action of different NPs on mussel hemocytes in vitro demonstrate that cell-mediated immunity represents a significant target for NPs. Moreover, in vivo exposure to NPs indicates that, due to the physiological mechanisms involved in the feeding process, NP agglomerates/aggregates taken up by the gills are directed to the digestive gland, where intra-cellular uptake of nanosized materials induces lysosomal perturbations and oxidative stress. Overall, bivalves represent a particularly suitable model for investigating the effects and mechanisms of action underlying the potential toxicity of NPs in marine invertebrates.
Copyright © 2011 Elsevier Ltd. All rights reserved.