Magnetostructural transitions in a frustrated magnet at high fields

Phys Rev Lett. 2011 Jun 17;106(24):247202. doi: 10.1103/PhysRevLett.106.247202. Epub 2011 Jun 16.

Abstract

Ultrasound and magnetization studies of bond-frustrated ZnCr(2)S(4) spinel are performed in static magnetic fields up to 18 T and in pulsed fields up to 62 T. At temperatures below the antiferromagnetic transition at T(N1)≈14 K, the sound velocity as a function of the magnetic field reveals a sequence of steps followed by plateaus indicating a succession of crystallographic structures with constant stiffness. At the same time, the magnetization evolves continuously with a field up to full magnetic polarization without any plateaus in contrast to geometrically frustrated chromium oxide spinels. The observed high-field magnetostructural states are discussed within a H-T phase diagram taking into account the field and temperature evolution of three coexisting spin structures and subsequent lattice transformations induced by the magnetic field.