Background and objective: Periodontal ligament cells play an important role in maintaining homeostasis of periodontal tissue upon mechanical force loading caused by mastication or orthodontic force. Previous studies revealed force-driven periodontal ligament cell death via apoptosis, but the force-sensing genes assigned to the apoptotic pathway have not been fully characterized. The present study aimed to identify force-sensing genes implicated in the apoptotic pathway in periodontal ligament cells.
Material and methods: Human periodontal ligament cells were exposed to 20% stretch strain for 6 or 24 h, and the differential expression of 84 genes implicated in the apoptotic pathway were quantified by real-time PCR array technology.
Results: Ten and 11 genes showed upregulated expression after 6 and 24 h stretches, respectively, and there were two downregulated genes in response to both 6 and 24 h stretches. These genes included those encoding the tumor necrosis factor ligand family (TNFSF8), tumor necrosis factor receptor family (FAS, TNFRSF10B, TNFRSF11B, TNFRSF25 and CD27), the Bcl-2 family (BAG3, BAK1, BCL2L11 and BCLAF1), the caspase family (CASP5 and CASP7), the inhibitor of apoptosis proteins family (BIRC3, BIRC6 and NAIP), the caspase recruitment domain family (RIPK2 and PYCARD) and the death domain family (DAPK1), as well as an oncogene (BRAF).
Conclusion: This study identified several force-sensing genes implicated in the apoptotic pathway in periodontal ligament cells and should facilitate future studies on force-driven apoptosis by providing putative target genes.
© 2011 John Wiley & Sons A/S.