Physical and functional interactions between Runx2 and HIF-1α induce vascular endothelial growth factor gene expression

J Cell Biochem. 2011 Dec;112(12):3582-93. doi: 10.1002/jcb.23289.

Abstract

Angiogenesis and bone formation are intimately related processes. Hypoxia during early bone development stabilizes hypoxia-inducible factor-1α (HIF-1α) and increases angiogenic signals including vascular endothelial growth factor (VEGF). Furthermore, stabilization of HIF-1α by genetic or chemical means stimulates bone formation. On the other hand, deficiency of Runx2, a key osteogenic transcription factor, prevents vascular invasion of bone and VEGF expression. This study explores the possibility that HIF-1α and Runx2 interact to activate angiogenic signals. Runx2 over-expression in mesenchymal cells increased VEGF mRNA and protein under both normoxic and hypoxic conditions. In normoxia, Runx2 also dramatically increased HIF-1α protein. In all cases, the Runx2 response was inhibited by siRNA-mediated suppression of HIF-1α and completely blocked by the HIF-1α inhibitor, echinomycin. Similarly, treatment of preosteoblast cells with Runx2 siRNA reduced VEGF mRNA in normoxia or hypoxia. However, Runx2 is not essential for the HIF-1α response since VEGF is induced by hypoxia even in Runx2-null cells. Endogenous Runx2 and HIF-1α were colocalized to the nuclei of MC3T3-E1 preosteoblast cells. Moreover, HIF-1α and Runx2 physically interact using sites within the Runx2 RUNT domain. Chromatin immunoprecipitation also provided evidence for colocalization of Runx2 and HIF-1α on the VEGF promoter. In addition, Runx2 stimulated HIF-1α-dependent activation of an HRE-luciferase reporter gene without requiring a separate Runx2-binding enhancer. These studies indicate that Runx2 functions together with HIF-1α to stimulate angiogenic gene expression in bone cells and may in part explain the known requirement for Runx2 in bone vascularization.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • 3T3 Cells
  • Animals
  • Base Sequence
  • Cell Line
  • Chromatin Immunoprecipitation
  • Core Binding Factor Alpha 1 Subunit / physiology*
  • DNA Primers
  • Gene Expression Regulation / physiology*
  • Hypoxia-Inducible Factor 1, alpha Subunit / physiology*
  • Mice
  • Polymerase Chain Reaction
  • Promoter Regions, Genetic
  • RNA, Messenger / genetics
  • Vascular Endothelial Growth Factor A / genetics*

Substances

  • Core Binding Factor Alpha 1 Subunit
  • DNA Primers
  • Hif1a protein, mouse
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • RNA, Messenger
  • Runx2 protein, mouse
  • Vascular Endothelial Growth Factor A