Src homology domain 2-containing protein-tyrosine phosphatase-1 (SHP-1) binds and dephosphorylates G(alpha)-interacting, vesicle-associated protein (GIV)/Girdin and attenuates the GIV-phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway

J Biol Chem. 2011 Sep 16;286(37):32404-15. doi: 10.1074/jbc.M111.275685. Epub 2011 Jul 28.

Abstract

GIV (Gα-interacting vesicle-associated protein, also known as Girdin) is a bona fide enhancer of PI3K-Akt signals during a diverse set of biological processes, e.g. wound healing, macrophage chemotaxis, tumor angiogenesis, and cancer invasion/metastasis. We recently demonstrated that tyrosine phosphorylation of GIV by receptor and non-receptor-tyrosine kinases is a key step that is required for GIV to directly bind and enhance PI3K activity. Here we report the discovery that Src homology 2-containing phosphatase-1 (SHP-1) is the major protein-tyrosine phosphatase that targets two critical phosphotyrosines within GIV and antagonizes phospho-GIV-dependent PI3K enhancement in mammalian cells. Using phosphorylation-dephosphorylation assays, we demonstrate that SHP-1 is the major and specific protein-tyrosine phosphatase that catalyzes the dephosphorylation of tyrosine-phosphorylated GIV in vitro and inhibits ligand-dependent tyrosine phosphorylation of GIV downstream of both growth factor receptors and GPCRs in cells. In vitro binding and co-immunoprecipitation assays demonstrate that SHP-1 and GIV interact directly and constitutively and that this interaction occurs between the SH2 domain of SHP-1 and the C terminus of GIV. Overexpression of SHP-1 inhibits tyrosine phosphorylation of GIV and formation of phospho-GIV-PI3K complexes, and specifically suppresses GIV-dependent activation of Akt. Consistently, depletion of SHP-1 enhances peak tyrosine phosphorylation of GIV, which coincides with an increase in peak Akt activity. We conclude that SHP-1 antagonizes the action of receptor and non-receptor-tyrosine kinases on GIV and down-regulates the phospho-GIV-PI3K-Akt axis of signaling.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • COS Cells
  • Chlorocebus aethiops
  • HeLa Cells
  • Humans
  • Microfilament Proteins / genetics
  • Microfilament Proteins / metabolism*
  • Phosphatidylinositol 3-Kinases / genetics
  • Phosphatidylinositol 3-Kinases / metabolism*
  • Phosphorylation / physiology
  • Protein Binding
  • Protein Structure, Tertiary
  • Protein Tyrosine Phosphatase, Non-Receptor Type 6 / genetics
  • Protein Tyrosine Phosphatase, Non-Receptor Type 6 / metabolism*
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism*
  • Signal Transduction / physiology*
  • Vesicular Transport Proteins / genetics
  • Vesicular Transport Proteins / metabolism*

Substances

  • CCDC88A protein, human
  • Microfilament Proteins
  • Vesicular Transport Proteins
  • Proto-Oncogene Proteins c-akt
  • PTPN6 protein, human
  • Protein Tyrosine Phosphatase, Non-Receptor Type 6