A new polymer, poly[{9,9-di(triphenylamine)fluorene}(9,9-dihexylfluorene)(4-aminophenylcarbazole)] (PFCz) was synthesized and used in a reaction with graphene oxide (GO) containing surface-bonded acyl chloride moieties to give a soluble GO-based polymer material GO-PFCz. A bistable electrical switching effect was observed in an electronic device in which the GO-PFCz film was sandwiched between indium-tin oxide (ITO) and Al electrodes. This device exhibited two accessible conductivity states, that is, a low-conductivity (OFF) state and a high-conductivity (ON) state, and can be switched to the ON state under a negative electrical sweep; it can also be reset to the initial OFF state by a reverse (positive) electrical sweep. The ON state is nonvolatile and can withstand a constant voltage stress of -1 V for 3 h and 10(8) read cycles at -1 V under ambient conditions. The nonvolatile nature of the ON state and the ability to write, read, and erase the electrical states, fulfill the functionality of a rewritable memory. The mechanism associated with the memory effects was elucidated from molecular simulation results and in-situ photoluminescence spectra of the GO-PFCz film under different electrical biases.
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.