Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair

Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13438-43. doi: 10.1073/pnas.1016546108. Epub 2011 Aug 1.

Abstract

There is great demand for the development of novel therapies for ischemic cardiovascular disease, a leading cause of morbidity and mortality worldwide. We report here on the development of a completely synthetic cell-free therapy based on peptide amphiphile nanostructures designed to mimic the activity of VEGF, one of the most potent angiogenic signaling proteins. Following self-assembly of peptide amphiphiles, nanoscale filaments form that display on their surfaces a VEGF-mimetic peptide at high density. The VEGF-mimetic filaments were found to induce phosphorylation of VEGF receptors and promote proangiogenic behavior in endothelial cells, indicated by an enhancement in proliferation, survival, and migration in vitro. In a chicken embryo assay, these nanostructures elicited an angiogenic response in the host vasculature. When evaluated in a mouse hind-limb ischemia model, the nanofibers increased tissue perfusion, functional recovery, limb salvage, and treadmill endurance compared to controls, which included the VEGF-mimetic peptide alone. Immunohistological evidence also demonstrated an increase in the density of microcirculation in the ischemic hind limb, suggesting the mechanism of efficacy of this promising potential therapy is linked to the enhanced microcirculatory angiogenesis that results from treatment with these polyvalent VEGF-mimetic nanofibers.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiogenic Proteins / chemistry
  • Angiogenic Proteins / therapeutic use*
  • Animals
  • Cell Line
  • Chick Embryo
  • Endothelium, Vascular
  • Humans
  • Ischemia / drug therapy*
  • Mice
  • Molecular Mimicry
  • Nanostructures / chemistry*
  • Nanostructures / therapeutic use
  • Neovascularization, Physiologic / drug effects
  • Vascular Endothelial Growth Factor A / physiology*
  • Wound Healing / drug effects*

Substances

  • Angiogenic Proteins
  • Vascular Endothelial Growth Factor A