Reaction dynamics of a molecular switch unveiled by coherent two-dimensional electronic spectroscopy

J Am Chem Soc. 2011 Aug 24;133(33):13074-80. doi: 10.1021/ja2032037. Epub 2011 Aug 2.

Abstract

Coherent two-dimensional electronic spectroscopy is usually employed on molecular species with fixed geometric configuration. Here we present two-dimensional Fourier-transform electronic spectra of dissolved 6,8-dinitro-1',3',3'-trimethylspiro[2H-1-benzopyran-2,2'-indoline] (6,8-dinitro-BIPS), a photochromic system present in two ring-open forms differing in the cis/trans configuration of a double bond, which both undergo a photoinduced ring closure. The two-dimensional spectra, recorded with 20 fs pump pulses centered at 605 nm and a supercontinuum probe covering the complete visible spectral range, allow for a detailed analysis of the photophysics and photochemistry of the two isomers and directly reveal that cis/trans isomerization among them does not play a major role. This experiment demonstrates the potential of two-dimensional electronic spectroscopy for reactive processes.