Recently, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is suggested as a new agent in the fighting against fibrogenesis. In tumor, DJ-1 is identified as a negative regulator of PTEN. But the expression of DJ-1 and the regulation of PTEN in fibrosis are unclear. Renal fibrosis was induced in 5/6 subtotal nephrectomy rat model. Human proximal tubular epithelial cells (HKC) were treated with transforming growth factor-beta 1 (TGF-β1), or transfected with DJ-1 or PTEN. Confocal microscope was used to investigate the localization of DJ-1 and PTEN. The selective phosphoinositide-3 kinase (PI3K) inhibitor, LY294002, was administered to inhibit PI3K pathway. The DJ-1 and PTEN expression, markers of epithelial-mesenchymal transition (EMT) and Akt phosphorylation were measured by RT-PCR, Western blotting or immunocytochemistry. In vitro, after HKC cells were stimulated with 10 ng/mL TGF-β1 for 72 h, the expression of DJ-1 was increased, and that of PTEN was decreased. In vivo, the same results were identified in 5/6-nephrectomized rats. In normal HKC cells, most of DJ-1 protein localized in cytoplasm, and little in nucleus. TGF-β1 upregulated DJ-1 expression in both cytoplasma and nuclei. In contrary, TGF-β1 emptied cytoplasmic PTEN protein into nucleus. Overexpression of DJ-1 decreased the expression of PTEN, promoted the activation of Akt and the expression of vimentin, and also led to the loss of cytoplasmic PTEN. Contrarily, overexpression of PTEN protected HKC cells from TGF-β1-induced EMT. In conclusion, DJ-1 is upregulated in renal fibrosis and DJ-1 mediates EMT by suppressing cytoplasmic PTEN expression and Akt activation.