Superconductivity in Pb, H under extreme pressure and CaBeSi, in the framework of the density functional theory for superconductors, is discussed. A detailed analysis on how the electron-phonon and electron-electron interactions combine together to determine the superconducting gap and critical temperature of these systems is presented. Pb, H under pressure and CaBeSi are multigap superconductors. We will address the question under which conditions does a system exhibits this phenomenon. The presented results contribute to the understanding of multiband and anisotropic superconductivity, which has received a lot of attention since the discovery of MgB(2), and show how it is possible to describe the superconducting properties of real materials on a fully ab initio basis.