The magnetization states in Ni triangular dots under an applied magnetic field have been studied using variable-field magnetic force microscopy (VF-MFM) imaging. In order to understand their dynamics we performed micromagnetic simulations which are in remarkable agreement with the experimental MFM results. The nanostructures present magnetic vortices as ground states which move under an external magnetic field. The combination of micromagnetic simulations and MFM imaging allows us to identify correctly the vortex chiralities and polarizations. The triangular geometry produces an improved contrast of the vortex core. Additionally, the vortices of different chiralities present clearly different MFM images under an applied field.