Depositing silver nanoparticles on/in a glass slide by the sonochemical method

Nanotechnology. 2008 Oct 29;19(43):435604. doi: 10.1088/0957-4484/19/43/435604. Epub 2008 Sep 22.

Abstract

A glass substrate was coated with silver by ultrasound irradiation. The structure and morphology of the nanoparticles in the deposited film were characterized using methods such as XRD, TEM, HR TEM, HRSEM, AFM, TOF-SIMS and optical spectroscopy. It was demonstrated that nucleation and the ensuing growth of the nanoparticles occurs in solution and is influenced by the concentration of the precursor, temperature and time of sonication. TOF-SIMS measurements revealed that silver nanoparticles passed through the glass interface and diffused within the glass substrate up to ∼60 nm. An analysis of the thermal effects accompanying the sonochemical cavitation of micro-bubbles in the solution near the solid surfaces shows that the collision of nanoparticles can lead to their melting and coalescence. Sonochemical deposition takes place layer by layer, so that the completion of the deposition of each layer of nanoparticles is followed by the sintering of adjacent particles and the formation of a close-packed layer. Using PVP as a stabilizing agent, a monolayer coating of silver nanoparticles on the glass surface was obtained. The coated glass demonstrated antibacterial activity.