Genomic selection for maternal traits in pigs

J Anim Sci. 2011 Dec;89(12):3908-16. doi: 10.2527/jas.2011-4044. Epub 2011 Aug 12.

Abstract

The aim of this study was to compare alternative designs for implementation of genomic selection to improve maternal traits in pigs, with a conventional breeding scheme and a progeny testing scheme. The comparison was done through stochastic simulation of a pig population. It was assumed that selection was performed based on a trait that could be measured on females after the first litter, with a heritability of 0.1. Genomic selection increased genetic gain and reduced the rate of inbreeding, compared with conventional selection without progeny testing. Progeny testing could also increase genetic gain and decrease the rate of inbreeding, but because of the increased generation interval, the increase in annual genetic gain was only 7%. When genomic selection was applied, genetic gain was increased by 23 to 91%, depending on which and how many animals were genotyped. Genotyping dams in addition to the male selection candidates gave increased accuracy of the genomic breeding values, increased genetic gain, and decreased rate of inbreeding. To genotype 2 or 3 males from each litter, in order to perform within-litter selection, increased genetic gain 8 to 12%, compared with schemes with the same number of genotyped females but only 1 male candidate per litter. Comparing schemes with the same total number of genotyped animals revealed that genotyping more females caused a greater increase in genetic gain than genotyping more males because greater accuracy of selection was more advantageous than increasing the number of male selection candidates. When more than 1 male per litter was genotyped, and thereby included as selection candidates, rate of inbreeding increased because of coselection of full sibs. The conclusion is that genomic selection can increase genetic gain for traits that are measured on females, which includes several traits with economic importance in maternal pig breeds. Genotyping females is essential to obtain a high accuracy of selection.

MeSH terms

  • Animals
  • Breeding
  • Female
  • Genomics*
  • Genotype*
  • Male
  • Selection, Genetic*
  • Swine / genetics*
  • Swine / physiology*