EW-7195, a novel inhibitor of ALK5 kinase inhibits EMT and breast cancer metastasis to lung

Eur J Cancer. 2011 Nov;47(17):2642-53. doi: 10.1016/j.ejca.2011.07.007. Epub 2011 Aug 16.

Abstract

Recently, researchers are actively pursuing efforts to develop potent and selective ALK5 (TβRI) kinase inhibitors for clinical development. In this study, the authors examined a novel small molecule inhibitor of ALK5, 3-((4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl)methylamino)benzonitrile (EW-7195) to determine if it has potential for cancer treatment. The inhibitory effects of EW-7195 on TGF-β-induced Smad signaling and epithelial-to-mesenchymal transition (EMT) were investigated in mammary epithelial cells using luciferase reporter assays, immunoblotting, confocal microscopy and wound healing assays. In addition, the suppressive effects of EW-7195 on mammary cancer metastasis to lung were examined using a Balb/c xenograft and MMTV/cNeu transgenic mice model system. The novel ALK5 inhibitor, EW-7195, inhibited the TGF-β(1)-stimulated transcriptional activations of p3TP-Lux and pCAGA(12)-Luc. In addition, EW-7195 decreased phosphorylated Smad2 levels and the nuclear translocation of Smad2 increased by TGF-β(1). In addition, EW-7195 inhibited TGF-β(1)-induced EMT and wound healing of NMuMG cells. Furthermore, in xenografted Balb/c and MMTV/cNeu mice, EW-7195 inhibited metastasis to lung from breast tumours. The novel ALK5 inhibitor, EW-7195, efficiently inhibited TGF-β(1)-induced Smad signaling, EMT and breast tumour metastasis to the lung in vivo, demonstrating that EW-7195 has therapeutic potential for the breast cancer metastasis to the lung.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / therapeutic use*
  • Breast Neoplasms / drug therapy*
  • Cell Line, Tumor
  • Cell Movement / drug effects
  • Cell Transformation, Neoplastic / drug effects
  • Epithelial-Mesenchymal Transition / drug effects
  • Female
  • Hep G2 Cells / enzymology
  • Humans
  • Luciferases / metabolism
  • Lung Neoplasms / prevention & control*
  • Lung Neoplasms / secondary
  • Mice
  • Mice, Transgenic
  • Neoplasm Invasiveness
  • Phosphorylation / drug effects
  • Protein Kinase Inhibitors / pharmacology*
  • Protein Kinase Inhibitors / therapeutic use*
  • Protein Serine-Threonine Kinases / antagonists & inhibitors*
  • Pyridines / therapeutic use*
  • Receptor, Transforming Growth Factor-beta Type I
  • Receptors, Transforming Growth Factor beta / antagonists & inhibitors*
  • Smad2 Protein / metabolism
  • Triazoles / therapeutic use*

Substances

  • 3-((4-((1,2,4)triazolo(1,5-a)pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl)methylamino)benzonitrile
  • Antineoplastic Agents
  • Protein Kinase Inhibitors
  • Pyridines
  • Receptors, Transforming Growth Factor beta
  • Smad2 Protein
  • Triazoles
  • Luciferases
  • Protein Serine-Threonine Kinases
  • Receptor, Transforming Growth Factor-beta Type I
  • TGFBR1 protein, human
  • Tgfbr1 protein, mouse