A main group metal sandwich: five lithium cations jammed between two corannulene tetraanion decks

Science. 2011 Aug 19;333(6045):1008-11. doi: 10.1126/science.1208686.

Abstract

Lithium-coordinated polyaromatic anions such as tetrareduced corannulene, C(20)H(10)(4-) (1(4-)), are useful substrates to model and ultimately improve the graphitic electrodes in lithium-ion (Li(+)) batteries. Previous studies suggested that 1(4-) forms dimers encasing four Li(+) ions in solution. Here, we report a single-crystal x-ray diffraction analysis confirming the formation of a sandwich-type supramolecular aggregate with a high degree of alkali metal intercalation. In contrast to the prior model, our data reveal that five Li(+) ions are sandwiched between the two tetrareduced corannulene decks, and (7)Li nuclear magnetic resonance spectroscopy delineates a conserved structure in tetrahydrofuran solution. Remarkably, the sandwich is robust in both solution and solid states even in the presence of crown ethers that compete for Li(+) coordination. These results should help elucidate Li(+) intercalation motifs between curved carbon surfaces more broadly.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.