We sought to compare the therapeutic efficacy between two vascular-disrupting agents, combretastatin A4 phosphate (CA4P) and ZD6126, at a clinically relevant dose on tumor models with magnetic resonance imaging (MRI). Thirty rats with liver rhabdomyosarcoma were randomized into CA4P (10 mg/kg), ZD6126 (10 mg/kg), and control group (n=10 for each group). Multiparametric MRI biomarkers including tumor volume, enhancement ratio, necrosis ratio, apparent diffusion coefficient (ADC), and K (volume transfer constant) derived from T2-weighted, T1-weighted, contrast-enhanced T1-weighted, and diffusion-weighted imaging, and dynamic contrast-enhanced MRI were compared at pretreatment, 1 h, 6 h, 24 h, 48 h, and 120 h posttreatment; they were validated using ex-vivo techniques. Relative to rapidly growing tumors without necrosis in control rats, tumors grew slower in the CA4P group compared with the ZD6126 group with a higher necrosis ratio at 120 h (P<0.05), as proven by histopathology. In the CA4P group, K decreased from 1 h until 6 h, and partially recovered at 120 h. In the ZD6126 group, the reduced K at 1 h began to rebound from 6 h and exceeded the baseline value at 120 h (P<0.05), parallel to evolving enhancement ratios (P<0.05). ADC revealed more necrotic tumors with CA4P versus ZD6126 at 120 h (P<0.05). The different tumor responses were confirmed by ex-vivo microangiography and histopathology. CA4P was more effective than ZD6126 in impairing blood supply, inducing necrosis, and delaying growth in rat liver tumors at a clinically relevant dose. A single dose of vascular-disrupting agent was insufficient to destroy the tumor. The multiparametric MRI biomarkers enabled in-vivo noninvasive comparison of therapeutic efficacy between CA4P and ZD6126.