A novel approach to improve the bioavailability and stability of atorvastatin (AT) was developed by constructing a nano-sized polymer-atorvastatin conjugate. Firstly, a novel chitosan-atorvastatin (CH-AT) conjugate was efficiently synthesized through amide coupling reaction. The formation of conjugate was confirmed by (1)H NMR and FT-IR spectrometry. Nano-sized conjugate with a mean size of 215.3±14.2 nm was prepared by the process of high pressure homogenization (HPH). Scanning electron microscopy (SEM) revealed that CH-AT nano-conjugate possess smooth surface whereas X-ray diffraction (XRD) spectra demonstrated amorphous nature of nano-conjugate. Further, CH-AT nano-conjugate showed solubility enhancement of nearly 4-fold and 100-fold compared to CH-AT conjugate and pure AT, respectively. In vitro drug release studies in simulated gastric fluid and simulated intestinal fluid suggested sustained release of AT from the conjugate. Additionally, the nano-conjugate significantly reduced the acidic degradation of AT. The plasma-concentration time profile of AT after oral administration of CH-AT nano-conjugate (2574±95.4 ng/mL) to rat exhibited nearly 5-fold increase in bioavailability compared with AT suspension (583±55.5 ng/mL). Finally, variable bioavailability, as observed for AT suspension was also reduced when AT was administered in form of CH-AT nano-conjugate. Taken together these data demonstrate that chitosan conjugate nano-prodrugs may be used as sustained polymeric prodrugs for enhancing bioavailability.
Copyright © 2011 Elsevier B.V. All rights reserved.