Quality control processes regulate the proteome by determining whether a protein is to be folded or degraded. Hsp90 is a hub in the network of molecular chaperones that maintain this process because it promotes both folding and degradation, in addition to regulating expression of other quality control components. The significance of Hsp90's role in quality control is enhanced by the function of its clients, which include protein kinases and transcription factors, in cellular signaling. The inhibition of Hsp90 with small molecules results in the rapid degradation of such clients via the ubiquitin/proteasome pathway, and also in the induction of the Hsp70 molecular chaperone. These two events result in markedly different outcomes depending on cell type. For tumor cells there is a profound loss of signaling in growth promoting pathways. By contrast, increased amounts of Hsp70 in neuronal cells ameliorate the toxicity that is associated with the formation of aggregates observed in neurodegenerative conditions. In this review we discuss the mechanisms underlying these differential effects of Hsp90 inhibition on the quality control of distinct client proteins. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Copyright © 2011 Elsevier B.V. All rights reserved.